当前位置:首页 > 百科

微分几何教程

《微分几威但何教程》是2000年世界图书出版公司出版的图书,作者是Wilhelm Klingenberg。

  • 书名 微分几何教程
  • 作者 Wilhelm Klingenberg
  • 出版社 世界图书出版公司
  • 出版时间 2000年12月
  • 页数 178 页

内容简介

  Upon David Hoffman fell the difficult task of transforming the tightly constructed German text into one which would mesh well with the more relaxed format of the Graduate Texts in Mathematics series. 式它病斤There are some elaborations and seve井让济个手列构屋进或ral new figures have been added. I trust that the merits of the G来自erman edition have survived whereas at the same time the efforts of David helpe360百科d to elucidate the general conception of the Course wher英甚迅介负满训病歌把e we tried to 促适度告告余put Geometry before Formalism without giving up mathematical rigour殖宗客三病右轴们等毫.

  本书为英文版。

例社满已执别比电层目录

  Chapter 0 Calculus in Euclidean Space

  负独围护世巴的片0.1 Euclidean Sp律班志同ace

  0.2 The Topology of Euclidean Space

  0.3 Differentiation in Rn

  0.4 Tangent Space

  0.5 Local Behavior of Differentiable Functions (Injective and Surjective Functions

  Chapter 1 Curves

  1.1 Definitions

  带施阶语古该配度省接1.2 The Frenet Frame

  1.3 The Frenet Equations

  1.4 Plane C林思纪调规按湖矛单urves; Local Theory

  能别充笔林基1.5 Space Curves

试龙部吗某居叶逐化喜  1.6 Exercises

  Chapter 2 Plane Curves: Global Theory

  2.1 The Rotation Number

  2.2 The Umlaufsatz

  2.3 Convex Curves

  Chapter 3 Surfaces:Local Theory

  3.1 Definitions

  3.2 The First Fundamental Form

 句婷 3.3 The Seco总江房误校混nd Fundamen专育最只tal Form

  3.4 Curves on Surfaces

  3.5 Principal Curvature,Gauss Curvature,and Mean Curvature

  3.6 Normal Form for a Surface,Special Coordinates

  3.7 Special Surfaces,Developable Surfaces

  3.8 The Gauss and Codazzi-Mainardi Equations

  3.9 Exercises and Some Further Results

  Chapter 4 Intrinsic Geometry of Surfaces:Local Theory

  4.1 Vector Fields and Covariant Differentiation

  4.2 Parallel Translation

  4.3 Geodesics

  4.4 Surfaces of Constant Curvature

  4.5 Examples and Exercises

  Chapter 5 Two-dimensional Riemannian Genometry

  Chapter 6 The Global Geometry of Surfaces

  References

  Index

  Index of Symbols

标签:

  • 关注微信
下一篇:陈晓岗

相关文章